
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes - Unit 4

ASSEMBLY LANGUAGE PROGRAMMING
We refer to the HHCCSS1122 CCPPUU RReeffeerreennccee MMaannuuaall RReevv.. 44..00 for a comprehensive list of Assembly Instructions. We will be referring
to sections in this Reference Manual. Also, refer to the MC9S12DG256 memory map found on the Dragon12-Light User Manual
to find about the 12KB RAM for Data, the 16KB Fixed Flash for Instructions, etc.

CCOONNDDIITTIIOONN CCOODDEE RREEGGIISSTTEERR ((CCCCRR))
Many instructions (especially branch instructions) use the bits in the Condition Code Register (CCR). In particular, the status
bits reflect the result of a CPU operation:

 C: This bit is set (C1) whenever a carry occurs during addition or a borrow occurs during subtractions.

- Addition: The carry bit is the carry out bit whether we treat the operands as unsigned or signed numbers.
- Subtraction: The carry bit is actually a borrow out bit. A borrow out bit is only valid when the operands are unsigned.

Thus, for a subtraction operation, the C bit is obtained by treating the operands as unsigned numbers.
 V: This bit is set (V1) when there is an overflow in a 2’s complement operation, i.e., operands are treated as signed

numbers. For an n-bit result, V=cncn-1. Note that we can always treat operands as unsigned, but the V bit will be invalid.

When using certain instructions (like divide), the overflow bit V has different rules.
- For example, for the SBA instruction: [A] [A]-[B]. The subtraction assumes that the operands are unsigned,

and as such the C bit will tell us whether there is a borrow. However, the V bit will be incorrect.
 N: This bit is set (N1) when the result of an operation is a negative number. This bit is obtained by treating the result as

a signed number. For an n-bit result R, the status bit N is equal to the MSB (N = Rn-1).

 Z: This bit is set (Z1) when the result of an operation is 0.

 H: This bit is set (H1) when there is a carry from the bit 3 of the accumulator A, i.e., c4=1.

AARRIITTHHMMEETTIICC OOPPEERRAATTIIOONNSS
Tables 5.4, 5.5, and 5.10 of the HCS12 CPU Reference Manual list the available arithmetic operations.

EXAMPLE: Multi-precision BCD Addition: Add two BCD numbers, where each BCD number has 4 digits.

ASM Code: unit4a.asm
; Include derivative-specific definitions

 INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; ROMStart $4000

nbytes EQU 3 ; constant (does not occupy space in memory)

; variable/data section

 ORG RAMStart ; Originate data at address RAMStart($1000)

; Variables definition: Data stored in the RAM section of the memory space

; Debug: Data appears in the Memory Window at Address $1000

numa dc.w $1979; 1 word reserved for the first number

numb dc.w $8533; 1 word reserved for the second number

sum ds.b nbytes; 'nbytes' bytes reserved for the final BCD sum

; code section

 ORG ROMStart ; Originate Instructions at address ROMStart

 ; Debug -> Assembly Window: Instructions start at ROMStart

 ldaa numa+1 ; A [numa+1]

 adda numb+1 ; A [A] + [numb+1]

 daa ; A: BCD adjust. It may introduce a carry

 staa sum+nbytes-1 ; m[sum+nbytes-1] A

 ldaa numa ; A [numa]

 adca numb ; A [A] + [numb] + C

 daa ; A: BCD adjust. It may introduce a carry

 staa sum+nbytes-2 ; m[sum+nbytes-2] A

 ldaa #0 ; A 0

 adca #0 ; A [A] + 0 + C

 staa sum ; m[sum] A

Address 8 bits

$19

$79

0x4000

0x4001

...

...

$85

$33

$01

$05

$12

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1006

...

RAMStart numa

numb

sum

ROMStart

S X H I N Z V C

A C +

6 6

1 2

9 F A C +

6 6 6 6

1 0 5 1 2

1 9 7 9 +

8 5 3 3

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

c 2
=0

c 1
=0

c 0
=0

7 9 +

3 3

c 2
=0

c 1
=0

c 0
=1

9 F +

6 6

1 0 5

1 9 +

8 5

9 F A C

c 2
=1

c 1
=1

c 0
=0

c 2
=1

c 1
=1

c 0
=0

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

MULTIPLICATION

 For the multiplication instructions (emul, emuls, mul), be aware of how the operands are treated (signed or

unsigned). Note that when multiplying numbers, the number of bits of the result is the sum of the number bits of the
multiplicands.

Examples:
 Unsigned multiplication of two 16-bit operands.

We can use emul: Unsigned multiplication of [D] and [Y]. The 32-bit result is stored in Y:D
ldd #$FA34 = 64052

ldy #$012B = 299

emul ; 64052×299 = 19151548 = $01243ABC. Y $0124, D $3ABC

 Signed multiplication of two 16-bit operands.

We can use emuls: Signed multiplication of [D] and [Y]. The 32-bit result is stored in Y:D
ldd #$FA34 = -1484

ldy #$012B = 299

emuls ; -1484×299 = -443716 = $FFF93ABC. Y $FFF9, D $3ABC

 Unsigned multiplication of two 8-bit operands.

We can use mul: Unsigned multiplication of [A] and [B]. The 16-bit result is stored in D
ldab #$91 = 145

ldaa #$F2 = 242

mul ; 145×242 = 35090 = $8912. D $8912

DIVISION:

 For the division operations (ediv, edivs, fdiv, idiv, idivs) be aware of how the operands are treated (signed,

unsigned) and how many bits are specified for each operand.

 32 by 16 bit divide (ediv, edivs): Dividend Y:D. Divisor: X. The quotient (stored in Y) and the remainder (stored in D)

are 16-bits wide. The quotient, however, might require more than 16 bits for its proper result (e.g. unsigned
FFFFFFFF/0001). In this case, the overflow bit is set. If a division by zero is attempted, the C bit is set, and the contents

of D and Y do not change.

Examples:
 Unsigned division:

ldy #$0033

ldd #$1B89 ; Dividend: $00331B89 = 3349385

ldx #$E24A ; Divisor: $E24A = 57930

ediv ; 3349385/57930: Y(quotient) 57 = $0039, D(Remainder) 47375 = $46F1

 Signed division:

ldy #$FFF5 ;

ldd #$02EA ; Dividend: $FFF502EA = -720150

ldx #$0653 ; Divisor: $0653 = 1619

edivs ; -720150/1619: Y(quotient) -445 = $FE43, D(Remainder) 305 = $0131

 16 by 16 bit divide (idiv, idivs). Dividend: D, Divisor: X. Quotient (in X) and Remainder (in D) are 16-bits wide. Here,

the 16 bits are enough for all possible cases. If a division by zero is attempted, C is set, Quotient is $FFFF and remainder

indeterminate.

 idivs instruction: We have the case $8000/$FFFF=-32768/-1=32768, which requires 17 bits in 2’s complement

representation). Here, the V bit is set.

 fdiv instruction: Unsigned Fractional divide (16 bits by 16 bits). Dividend: D, Divisor: X. Quotient (in X) and Remainder

(in D) are 16-bits wide. This is useful for division when numbers are represented in fixed point arithmetic.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

IIMMPPLLEEMMEENNTTIINNGG LLOOOOPPSS
Loops make use of the Branch Instructions along with Compare and Test, Loop Primitive, and Decrementing / Incrementing
Instructions. The Branch Instructions can be classified by the type of condition required to branch:

 Unconditional branches: The branch is always taken (e.g.: bra next)

 Simple branches: These instructions take a look at a particular bit in the Condition Code Register (CCR) to determine

whether to branch.
For example: beq next ; If Z=1, it branches.

For example: bvs next ; If V=1 (overflow in 2’s complement), it branches.

 Unsigned branches: These instructions treat the previous operation as between unsigned numbers and as such look for
a specific combination of CCR bits.
For example: bls next ; If in the previous operation, the first operand was lower than or equal to the second operand,

then this means that C+Z=1 (this is only true if the operands are treated as unsigned).

 Signed branches: These instructions treat the previous operation as between unsigned numbers and as such look for a
specific combination of CCR bits.

For example: bge next ; If in the previous operation, the first operand was greater than or equal to the second

operand, then this means that NV=0 (this is only true if the operands are treated as signed).

EXAMPLE: Store the numbers from na to nb in a memory array. This can be implemented as a for loop :

for i = na to nb do

array[i] i

end

ASM Code: unit4b.asm
; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; ROMStart $4000

na EQU 3

nb EQU 10

; variable/data section

ORG RAMStart ; Originate data at address RAMStart

; Variables Definition:

i ds.b 1; 1 byte is reserved for the index. Range: 0 to 255

array ds.b nb-na+1; nb-na+1 bytes reserved for the final sum

; code section

ORG ROMStart

movb #na,i ; m[i] na

ldx #array ; X array

loop movb i, 0,X ; m[X] [i]

ldaa i ; A [i]

cmpa #nb

beq next

inx

inc i ; m[i] [i]+1

bra loop

next bra next ; infinite loop

 The definition of the constants na and nb allows us to have a generic code.

 Note that X is used as an index. Initially X $1001. Then the memory contents pointed to by X store the value of ‘i’. As

i increases, so does the address stored in X.

 At every iteration, the register A holds the value of i so that it can be compared with nb.

 The variable ‘array’ is defined as having ‘nb-na+1’ bytes.

 The variable ‘i’ occupies 1 byte, i.e., na and nb are limited to 0 to 255.

 The instruction beq branches if the result of the previous operation is 0. What the instruction actually checks is whether

the bit Z of the CCR is 1.

 The instruction inc increments the contents of a memory address. Note that only the 8-bit data of the memory address is

incremented, so this instruction does not work with variables defined as having more than one byte.
 The last instruction bra next is an unconditional branch. By always branching to itself, it enters into an infinite loop.

Address 8 bits

[i]

$03

0x4000

0x4001

...

...

$04

$05

$06

$07

$08

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1008

...

RAMStart i

array

ROMStart

$09

$0A

0x1007

0x1006

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

EXAMPLE: Add the numbers from na to nb. This can be implemented as a for loop:
sum = 0

for i = na to nb

 sum sum + i

end

ASM Code: unit4c.asm
; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; ROMStart $4000

na EQU 1

nb EQU 10

; variable/data section

ORG RAMStart ; Originate data at address RAMStart

; Variables Definition:

i ds.w 1; 1 word is reserved for the index

sum ds.w 1; 1 word is reserved for the final sum

; code section

ORG ROMStart ; Originate data at address ROMStart.

ldx #na ; X na

ldd #na ; D na

loop: cpx #nb ; X = nb? (X-nb: only CCR bits are modified)

beq next ; Z = 1? (i.e., X=i?)

inx

stx i

addd i ; D [D] + [i]

bra loop

next std sum ; m[sum] [D]

 ‘i’ is defined as 1 word (16 bits, range: 0 to 65535). To operate ‘i’, we must use instructions that operate with 16 bits.

 The variable ‘sum’ occupies 16 bits (one word). This is where the final result will be stored. The most efficient way to

accumulate the summation is to store it in register D and use the addd instruction. In the example, the sum of the

numbers 1 to 10 is: 1+2+3+4+5+6+7+8+9+10=55=$0037.

EXAMPLE: Given 10 consecutive positive numbers (1 byte) in memory, find the maximum value.

maxval array[0]

i=1;

while (i < N) do

 if maxval < array[i] then

 maxval array[i]

 end

 i i + 1

end

ASM Code: unit4d.asm
; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; ROMStart <- $4000

N EQU 10

; variable/data section

 ORG RAMStart ; Originate data at address RAMStart

; variables definition:

array dc.b 21,32,42,9,125,244,255,224,37,98; positive numbers

maxval ds.b 1 ; 1 byte is reserved for the maximum value

; code section

 ORG ROMStart ; Originate data at address ROMStart

 movb array, maxval ; m[maxval] [array]

 ldx #(array + 1); X array+1

 ldab #N ; B N

loop: ldaa maxval ; A [maxval]

 cmpa 0,X

 bhs next ; A >= [$0+X]?

 movb 0,X,maxval ; m[maxval] [$0+[X]]

next inx

 dbne B,loop ; loop primitive instruction. B B-1 = 0?

Address 8 bits

iH

iL

0x4000

0x4001

...

...

$00

...

0x1000

0x1001

0x1002

0x1004

...

RAMStart i

sum

ROMStart

$370x1003

Address 8 bits

$15

$20

0x4000

0x4001

...

...

$2A

$09

$7D

$F4

$FF

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x100A

...

RAMStart array

maxval

ROMStart

$E0

$25

0x1007

0x1006

$62

$FF

0x1008

0x1009

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

 Assumption: We are working with positive numbers. Thus, we used bhs instead of bge. bge makes the comparison

treating the numbers as signed, while bhs makes the comparison treating the numbers as unsigned. Since we are working

with positive numbers, we must use bhs. If we were treating the bytes as unsinged, bge must be used instead.

EXAMPLE: Given 10 numbers, count the number of elements that are divisible by 8.
We count the numbers whose 3 LSBs are zero.

ASM Code: unit4e.asm
; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; ROMStart <- $4000

N EQU 10

; variable/data section

 ORG RAMStart ; Originate data at address RAMStart

; variables definition:

nums dc.b 88,12,8,4,16,23,41,120,34,176;

counter ds.b 1 ; 1 byte is reserved for the count

; code section

 ORG ROMStart

 clr counter

 ldx #nums ; X nums

 ldab #N ; B N

loop: brclr 0,X, $07, yes

 bra nno

yes: inc counter

nno: inx

 dbne B, loop ; B B-1 = 0?

forever: bra forever

SSHHIIFFTT AANNDD RROOTTAATTEE IINNSSTTRRUUCCTTIIOONNSS
Logical shift: The input bit is 0, and the output bit goes to C flag.
Arithmetic shift: The output bit goes to C flag. The input bit is zero if left shift. The input bit is the MSB if right shift

Example: A = $9A, B = $CE, m[$1F] = $B7
 Result C Result C Result C Result C

lsla A = $34 1 lsra A=$4D 0 asla A = $34 1 asra A = $CD 0

lslb B = $9C 1 lsrb B=$67 0 aslb B = $9C 1 asrb B = $E7 0

lsld D = $359C 1 lsrd D=$4D67 0 asld D = $359C 1

lsl $1F m[$1F]=$6E 1 lsr $1F m[$1F]=$5B 1 asl $1F m[$1F]=$6E 1 asr $1F m[$1F]=$DB 1

Rotate: We can rotate to the left or to the right. The trick is that these instructions use whatever it is on the carry bit

Example: A = $9A, B = $CE, m[$1000] = $B7
C = 0 C = 1

 Result Result Result Result

rola A=$34,C=1 rora A=$4D,C=0 rola A=$35,C=1 rora A=$CD,C=0

rolb B=$9C,C=1 rorb B=$67,C=0 rolb B=$9D,C=1 rorb B=$E7,C=0

rol $1000 m=$6E,C=1 ror $1000 m=$5B,C=1 rol $1000 m=$6F,C=1 ror $1000 m=$DB,C=1

BBOOOOLLEEAANN IINNSSTTRRUUCCTTIIOONNSS
Example: D = $BE45, m[$1000] = $C3
 Result Result Result Result

anda $1000 A = $82 oraa $1000 A = $FF eora $1000 A = $7D com $1000 m[$1000] = $3C

andb $1000 B = $41 orab $1000 B = $C7 eorb $1000 B = $86 neg $1000 m[$1000] = $3D

BBIITT TTEESSTT AANNDD MMAANNIIPPUULLAATTEE IINNSSTTRRUUCCTTIIOONNSS
Take a look at HHCCSS1122 CCPPUU RReeffeerreennccee MMaannuuaall RReevv.. 44..00 for detailed information on the instructions (allowed addressing modes,
bytes per instruction, etc).
Examples:

 bclr 0,X,$42: Clears bit 1 and bit 6 ($42 = 0100 0010) of the memory contents pointed by 0+[X]

 bset 0,Y,$45: Sets bit 1, bit 3, bit 7 ($85: 1000 0101) of the memory contents pointed by 0+[Y]

 bita 0,X: Performs A AND [0+[X]]. Updates Z if result in 0, and N if result is negative. V is set to zero.

Address 8 bits

$58

$0C

0x4000

0x4001

...

...

$08

$04

$10

$17

$29

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x100A

...

RAMStart nums

counter

ROMStart

$78

$22

0x1007

0x1006

$B0

$05

0x1008

0x1009

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

6 Instructor: Daniel Llamocca

PPRROOGGRRAAMM EEXXEECCUUTTIIOONN TTIIMMEE
The execution time is the sum of bus cycles a series of instructions takes. For each instruction, this information is found on

the Access Detail column of the Instruction Glossary in the HCS12 CPU Reference Manual. For example, psha takes 2 cycles

(the Access Detail column has 2 letters, pula takes 3 cycles, and nop takes one cycles. This is very useful to create time

delays. In particular, psha followed by pula takes 5 cycles and does nothing.

Example:
 We want to generate a 50 ms delay on a Dragon12-Light Board with a 25 MHz bus clock.
 This can be accomplished by a loop. Each iteration of the loop takes 𝑛 cycles. If we loop for 𝑛𝑡𝑖𝑚𝑒𝑠, then we have that our

delay was 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 ≡ 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 × 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 ×
1

25×106
= 50 ×

1

103
→ 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 = 125 × 104

 As a counter, 𝑛𝑡𝑖𝑚𝑒𝑠 can be stored in a 16-bit register (largest one). This means that 𝑛𝑡𝑖𝑚𝑒𝑠 ≤ 65535. Then, a good

number would be 50000. This results in 𝑛 =
125×104

50000
= 25. So, we need to have a loop with 25 bus cycles.

Using just nops More efficient code (fewer instructions)
ldx #50000

loop: nop ; 1 cycle

 nop ; 1 cycle

 nop ; 1 cycle

 ...

 nop ; 1 cycle

 dbne X, loop ; 3 cycles

ldx #50000

loop: psha ; 2 cycles

 pula ; 3 cycles

 psha ; 2 cycles

 pula ; 3 cycles

 psha ; 2 cycles

 pula ; 3 cycles

 psha ; 2 cycles

 pula ; 3 cycles

 nop ; 1 cycle

 nop ; 1 cycle

 dbne X, loop ; 3 cycles

MMUULLTTIIPPLLYY--AACCCCUUMMUULLAATTEE IINNSSTTRRUUCCTTIIOONN
 emacs <opr>: multiplies the 16 bits pointed by X and the 16 bits pointed by Y and add the result to the memory operand

(4 bytes). Stores the result in the same address. It is a signed operation, i.e. multiplication is carried out assuming that the
numbers are in 2’s complement.

Example: 𝑝 × 𝑤2 + 𝑞 × 𝑤 + 𝑟 = (𝑝 × 𝑤 + 𝑞) × 𝑤 + 𝑟. In the following code, we use p=125, w=103, q=3452, r=2134.

ASM Code: unit4f.asm
; Include derivative-specific definitions

 INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; absolute address to place my code/constant data

 ORG RAMStart ; Start data at $1000

p dc.w 125 ; 1 word reserved (only use 1 byte: -128 to 127 to avoid overflow).

w dc.w 103 ; 1 word reserved (only use 1 byte: -128 to 127 to avoid overflow).

q dc.w 3452 ; 1 word reserved (only use 15 bits: -2^14 to 2^14-1 to avoid overflow).

r ds.w 2 ; 2 words reserved (only use 31 bits: -2^30 to 2^30-1 to avoid overflow)

result ds.w 2 ; 2 word reserved for the 32-bit result

k ds.w 1 ; 1 word reserved for intermediate 16-bit result

; code section

 ORG ROMStart

Entry:

_Startup: LDS #RAMEnd+1 ; initialize the stack pointer. SP <- $3FFF+1

mainLoop: movw #0,r

 movw #2134, r+2 ; r <- 2134

 ldx #p

 ldy #w

 movw #0,result

 movw q,result+2 ; result <- q

 emacs result ; result <- p*w + result

 movw result+2, k ; k <- p*w+q

 ldx #k

 movw r, result

 movw r+2, result+2 ; result <- r

 emacs result; ; result <- k*w + result

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

7 Instructor: Daniel Llamocca

SSUUBBRROOUUTTIINNEESS

 A subroutine is a sequence of instructions that can be called from different places in a program.
 Once the subroutine is finished, it returns to the instruction immediately following the call instruction (bsr, jsr, call). To

accomplish this, when the subroutine call instruction is executed, the address of the next instruction (called Return
Address) is stored in the Stack. When the subroutine is finished, the return instruction (rts, rtc) grabs the Return Address
from the Stack and places it on the Program Counter so that we continue with the execution of the instruction located at
the Return Address.

 The Stack is a LIFO structure. Values are pushed onto the Stack. Values are pulled from the Stack starting with the last
value that was pushed.

EXAMPLE:
 Here, the subroutine called ‘myfun’ performs the bitwise AND operator of register A with a memory position. The result is

stored at another memory position.
 Note how the Stack Pointer (SP) is given the value $4000 (which is the address where the instruction start). The idea is

that the Stack must grow from the last allowable data memory ($1000 to $3FFF). So, when we want to add data to the

Stack, we first decrease the value of SP and then store the data.

 The memory figure on the left is the state of the memory after the bsr myfun instruction has been executed (and right

before entering the subroutine). This instruction does the following:

 SP SP – 2. Then, the Return Address (0x4009) is stored on m[SP] and m[SP+1].

 PC PC + offset. This becomes: PC Address of ‘myfun’ = $400E

 The memory figure on the right is the state of the memory after the rts instruction has been executed. This instruction
does the following:

 SP SP + 2. This makes the Stack effectively disappear.

 PC PC + offset. This becomes: PC Return Address = $4009.

movb #$DA, 1,-SP

movw #$FE4D, 2,-SP

ldaa #$9C

psha

pula

ldx 2,SP+

ldab 1,SP+

SP

$FE

$9C

$4D

$DA

SP SP

$FE

$9C

$4D

$DA

Empty Stack Empty Stack

main: lds #$4000

ldaa #$7A (2 bytes)

movb #$8A,$1000 (5 bytes)

bsr myfun ; PC <- $400E (2 bytes)

ldab $1001 (3 bytes)

bra main

myfun: anda $1000 (3 bytes)

sta $1001

rts ; PC <- $4009

Address 8 bits

$8A

...

...

0x1000

0x1001

...

$40

$09

SP

Return
Address

0x3FFF

0x4000

0x4002

0x4006

0x4009

0x4007

0x400C

0x400E

Address 8 bits

$8A

$0A

...

...

0x1000

0x1001

...

$40

$09

SP

0x3FFF

0x4000

0x4002

0x4006

0x4009

0x4007

0x400C

0x400E

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

8 Instructor: Daniel Llamocca

EXAMPLE: Applying the 2’s complement operation to a 16-bit value

 In this example, the subroutine ‘my_neg’ computes the 2’s complement of a 16-bit value (or changes the sign of a 16-bit

value). The input value is given in D. The output value is returned in Y.
 The subroutine employs the register D to perform the operation. However, the main routine uses D after the subroutine is

completed. Therefore, the subroutine has to push the value of D into the Stack before modifying it. Before exiting, the
subroutine pulls the value of D from the Stack to restore D to its original value.

 In the code below, we use pusha and pushb to store the contents of D (note that pushd could have also been used). We

also use pula and pulb to restore the contents of D (puld could have also been used).

 Note that during the execution of the subroutine, the Stack stores A, B, and the Return Address.
 In general, we can pass parameters to a Subroutine via: Registers, Stack (parameters are pushed on the Stack before the

subroutine is called), and Global Memory. We can also get the results from the Subroutine on: Registers, Stack (the main
routine requires to create space in the Stack before the subroutine call), and Global Memory.

 lds #RAMEnd+1:

In CodeWarrior with the Dragon12-Light Board, the Stack Pointer is assigned the value of #RAMEnd+1 = $3FFF+1 =

$4000. At this point, the Stack is empty, and we are not supposed to write on $4000, since this is the starting address of

the Instructions (ROMStart = $4000). Every time we push a value onto the Stack, we use pusha, pushb, pushc,

pushd, bsr, jsr. These instructions decrease the value of the Stack Pointer, and then store the contents on m[SP]. If

we use movw, movb to store data on the Stack (this is useful when we have to input parameters and we are out of

registers), we have to make sure to first decrease the value of the Stack Pointer.

 The value of SP=$4000 means that the Stack is empty. By using this value of $4000, we are placing the Stack at the last

memory addresses of the RAM section ($1000 to $3FFF).

INCLUDE 'derivative.inc'

ROMStart EQU $4000

; variable/data section

ORG RAMStart

; variables definition:

dataa dc.w $10F2;

datab dc.w 511;

; code section

ORG ROMStart

Entry:

_Startup: lds #RAMEnd+1 ; SP$4000

ldd dataa

bsr my_neg

addd datab

sty 0,D

; ===== Subroutine ============

my_neg: pshb

psha

coma

comb

addd #1

leay 0,D

pula

pulb

rts ; PC <- Return Address

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart dataa

datab

ROMStart

SPA

B

Return
AddressRAMEnd 0x3FFF

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart dataa

datab

ROMStart SP

RAMEnd 0x3FFF

S
T
A
C
K

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart dataa

datab

ROMStart

SPReturn
AddressRAMEnd 0x3FFF

S
T
A
C
K

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart dataa

datab

ROMStart SP

RAMEnd 0x3FFF

Return
Address

Address 8 bits Address 8 bits

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

9 Instructor: Daniel Llamocca

EXAMPLE: Fibonacci sequence
𝐹0 = 0, 𝐹1 = 1 (starting point). 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2

 The following algorithm gets F(counter) and places this result in variable ‘FiboRes’.

 A Subroutine called ‘CalcFibo’ computes the Fibonacci number. The Subroutine gets the input argument in register X;

the subroutine provides the result in D. Since D is a 16-bit register, the maximum positive number we can store is 65535.

Since F(24) = 46368 and F(25) = 75025, we can only compute up to F(24).

 The subroutine modifies the contents of X. As a precautionary measure, the subroutine pushes the value of X on the stack
at the beginning of the subroutine and pulls the value of X at the end of the subroutine (so that X keeps its proper value).

Algorithm:
Main Routine CalcFibo SubRoutine. Input Parameter X. Result stored in D

X counter

if X > 24 then

 restart

end

Go to Subroutine CalcFibo

FiboRes D

restart

push X

Y 0, D 1 (Y stores Fn-2, D stores Fn-1)

X X-1

if X = 0 then

 exit CalcFibo routine

end

while X ≠ 0

 Y D+Y

 exchange D and Y

 X X-1

end

pull X

ASM Code: unit4g.asm

; Include derivative-specific definitions

INCLUDE 'derivative.inc'

ROMStart EQU $4000

; variable/data section

ORG RAMStart ; Start data at $1000

; Insert here your data definition.

Counter DC.W 10 ; Fibonacci number to compute. Counter >= 1

FiboRes DS.W 1 ; 1 word (16 bits) reserved for the result

; code section

ORG ROMStart

Entry:

_Startup: LDS #RAMEnd+1 ; SP <- $3FFF+1 (initialize SP)

mainLoop: LDX Counter ; X contains counter

CPX #24

bhi mainLoop ; Fibo(25) causes overflow!

BSR CalcFibo

STD FiboRes ; store result

BRA mainLoop ; restart.

; ==

; Subroutines

; ==

CalcFibo: ; Function to calculate fibonacci numbers.

pshx

LDY #$00 ; Fn-2

LDD #$01 ; Fn-1

DBEQ X,FiboDone ; If X was 1, we're done

FiboLoop:

LEAY D,Y ; Y D+Y

EXG D,Y ; exchange D and Y

DBNE X,FiboLoop

FiboDone: pulx

RTS ; result in D

Address 8 bits

$00

$0A

0x4000

0x4001

...

...

$00

$00

...

0x1000

0x1001

0x1002

0x1003

0x1004

...

RAMStart Counter

FiboRes

ROMStart

SPXH

XL

Return
AddressRAMEnd 0x3FFF

$00

$0A

0x4000

0x4001

...

...

$00

$37

...

0x1000

0x1001

0x1002

0x1003

0x1004

...

RAMStart Counter

FiboRes

ROMStart SP

RAMEnd 0x3FFF

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

10 Instructor: Daniel Llamocca

STACK FRAME:

It is an orderly way to store data on the Stack:

 Incoming Parameters: They are usually provided as registers. But if we run out of registers, we can always place incoming

parameters on the Stack.
 Return Address: These two bytes are always stored on the Stack.
 Saved Registers: If we need to use registers inside the subroutine, a good practice is to push the registers’ values at the

beginning of the subroutine. When the subroutine is finished, the register recover their original values. This way, the
registers are never modified after a subroutine has been executed.

 Local Variables: We might need memory for particular operations inside the subroutine. If we just want to use this
memory while the subroutine is executing, we use memory from the stack. This is called Local memory, because it is not
available once we exit the subroutine.

Example:

; Include derivative-specific definitions

 INCLUDE 'derivative.inc'

ROMStart EQU $4000 ; absolute address to place my code/constant data

; variable/data section

 ORG RAMStart ; Start data at $1000

 ; Insert here your data definition.

val1 dc.b #$A2 ; $039D

val2 dc.b #$91 ; $00F2

val3 dc.b #$34 ; $00F5

; code section

 ORG ROMStart

Entry:

_Startup: LDS #RAMEnd+1 ; initialize the stack pointer. SP <- $3FFF+1

mainLoop: ;

 movb val1,1,-SP

 movb val2,1,-SP

 movb val3,1,-SP

 bsr myfun

 leas 3,SP

 ; More instructions

 ;

forever: bra forever

; ====================================

; Subroutines

; ====================================

myfun: psha

 pshb

 ; Allocating 4 bytes for local variables

 leas -4,SP; SP <- SP-4

 ; Instructions that use local variables, registers,

 ; and input parameters provided in the Stack

 ;

 ;

 leas 4,SP; SP <- SP+4 ; De-allocating Local Memory

 pulb

 pula

 rts

$A2

$91

0x4000

0x4001

...

...

$34

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart
val1

val2

ROMStart

SP

A

B

Return

Address

RAMEnd 0x3FFF

S
T
A
C
K

val3

val2

val1

Input
Parameters

Saved
Registers

Local
Variables

val3

