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1 Instructor: Daniel Llamocca 

Notes - Unit 4 
 

ASSEMBLY LANGUAGE PROGRAMMING 
We refer to the HHCCSS1122  CCPPUU  RReeffeerreennccee  MMaannuuaall  RReevv..  44..00 for a comprehensive list of Assembly Instructions. We will be referring 
to sections in this Reference Manual. Also, refer to the MC9S12DG256 memory map found on the Dragon12-Light User Manual 
to find about the 12KB RAM for Data, the 16KB  Fixed Flash for Instructions, etc. 

 

CCOONNDDIITTIIOONN  CCOODDEE  RREEGGIISSTTEERR  ((CCCCRR))  
Many instructions (especially branch instructions) use the bits in the Condition Code Register (CCR). In particular, the status 
bits reflect the result of a CPU operation: 
 
 

 
 C: This bit is set (C1) whenever a carry occurs during addition or a borrow occurs during subtractions. 

- Addition: The carry bit is the carry out bit whether we treat the operands as unsigned or signed numbers. 
- Subtraction: The carry bit is actually a borrow out bit. A borrow out bit is only valid when the operands are unsigned. 

Thus, for a subtraction operation, the C bit is obtained by treating the operands as unsigned numbers. 
 V: This bit is set (V1) when there is an overflow in a 2’s complement operation, i.e., operands are treated as signed 

numbers. For an n-bit result, V=cncn-1. Note that we can always treat operands as unsigned, but the V bit will be invalid. 

When using certain instructions (like divide), the overflow bit V has different rules.  
- For example, for the SBA instruction: [A]  [A]-[B]. The subtraction assumes that the operands are unsigned, 

and as such the C bit will tell us whether there is a borrow. However, the V bit will be incorrect. 
 N: This bit is set (N1) when the result of an operation is a negative number. This bit is obtained by treating the result as 

a signed number. For an n-bit result R, the status bit N is equal to the MSB (N = Rn-1).  

 Z: This bit is set (Z1) when the result of an operation is 0. 

 H: This bit is set (H1) when there is a carry from the bit 3 of the accumulator A, i.e., c4=1.  

  

AARRIITTHHMMEETTIICC  OOPPEERRAATTIIOONNSS  
Tables 5.4, 5.5, and 5.10 of the HCS12 CPU Reference Manual list the available arithmetic operations.  
 
EXAMPLE: Multi-precision BCD Addition: Add two BCD numbers, where each BCD number has 4 digits. 
 
ASM Code: unit4a.asm 
; Include derivative-specific definitions  

 INCLUDE 'derivative.inc'  

ROMStart    EQU $4000 ; ROMStart  $4000 

nbytes EQU 3  ; constant (does not occupy space in memory) 

 

; variable/data section 

   ORG RAMStart ; Originate data at address RAMStart($1000) 

 

; Variables definition: Data stored in the RAM section of the memory space 

; Debug: Data appears in the Memory Window at Address $1000  

numa dc.w $1979; 1 word reserved for the first number 

numb dc.w $8533; 1 word reserved for the second number 

sum ds.b nbytes; 'nbytes' bytes reserved for the final BCD sum 

 

; code section 

   ORG   ROMStart ; Originate Instructions at address ROMStart 

   ; Debug -> Assembly Window: Instructions start at ROMStart                           

   ldaa numa+1         ; A  [numa+1] 

   adda numb+1         ; A  [A] + [numb+1] 

   daa                 ; A: BCD adjust. It may introduce a carry 

   staa sum+nbytes-1   ; m[sum+nbytes-1]  A 

             

   ldaa numa           ; A  [numa] 

   adca numb           ; A  [A] + [numb] + C 

   daa                 ; A: BCD adjust. It may introduce a carry 

   staa sum+nbytes-2   ; m[sum+nbytes-2]  A  

            

   ldaa #0             ; A  0 

   adca #0             ; A  [A] + 0 + C 

   staa sum            ; m[sum]  A   

Address 8 bits

$19

$79

0x4000

0x4001

...

...

$85

$33

$01

$05

$12

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1006

...

RAMStart  numa

numb

sum

ROMStart 

S X H I N Z V C

A C +

6 6

1 2

9 F A C +

6 6 6 6

1 0 5 1 2

1 9 7 9 +

8 5 3 3

c 4
=0

c 3
=0

c 2
=0

c 1
=0

c 0
=0

c 2
=0

c 1
=0

c 0
=0

7 9 +

3 3

c 2
=0

c 1
=0

c 0
=1

9 F +

6 6

1 0 5

1 9 +

8 5

9 F A C

c 2
=1

c 1
=1

c 0
=0

c 2
=1

c 1
=1

c 0
=0

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf
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MULTIPLICATION 

 
 For the multiplication instructions (emul, emuls, mul), be aware of how the operands are treated (signed or 

unsigned). Note that when multiplying numbers, the number of bits of the result is the sum of the number bits of the 
multiplicands. 

 
Examples: 
 Unsigned multiplication of two 16-bit operands. 

We can use emul: Unsigned multiplication of [D] and [Y]. The 32-bit result is stored in Y:D 
ldd #$FA34 = 64052 

ldy #$012B = 299 

emul  ; 64052×299 = 19151548 = $01243ABC. Y  $0124, D  $3ABC 

 
 Signed multiplication of two 16-bit operands. 

We can use emuls: Signed multiplication of [D] and [Y]. The 32-bit result is stored in Y:D 
ldd #$FA34 = -1484 

ldy #$012B = 299 

emuls  ; -1484×299 = -443716 = $FFF93ABC. Y  $FFF9, D  $3ABC 

 
 Unsigned multiplication of two 8-bit operands. 

We can use mul: Unsigned multiplication of [A] and [B]. The 16-bit result is stored in D 
ldab #$91 = 145 

ldaa #$F2 = 242 

mul   ; 145×242 = 35090 = $8912. D  $8912  

 
DIVISION: 
 
 For the division operations (ediv, edivs, fdiv, idiv, idivs) be aware of how the operands are treated (signed, 

unsigned) and how many bits are specified for each operand. 
 

 32 by 16 bit divide (ediv, edivs): Dividend Y:D. Divisor: X. The quotient (stored in Y) and the remainder (stored in D) 

are 16-bits wide. The quotient, however, might require more than 16 bits for its proper result (e.g. unsigned 
FFFFFFFF/0001). In this case, the overflow bit is set. If a division by zero is attempted, the C bit is set, and the contents 

of D and Y do not change. 

 
Examples: 
 Unsigned division: 

ldy #$0033 

ldd #$1B89 ; Dividend: $00331B89 = 3349385 

ldx #$E24A ; Divisor: $E24A = 57930 

ediv  ; 3349385/57930: Y(quotient)  57 = $0039, D(Remainder)  47375 = $46F1 

 
 Signed division: 

ldy #$FFF5 ; 

ldd #$02EA ; Dividend: $FFF502EA = -720150 

ldx #$0653 ; Divisor: $0653 = 1619 

edivs ; -720150/1619: Y(quotient)  -445 = $FE43, D(Remainder)  305 = $0131 

 

 16 by 16 bit divide (idiv, idivs). Dividend: D, Divisor: X. Quotient (in X) and Remainder (in D) are 16-bits wide. Here, 

the 16 bits are enough for all possible cases. If a division by zero is attempted, C is set, Quotient is $FFFF and remainder 

indeterminate.  

 idivs instruction: We have the case $8000/$FFFF=-32768/-1=32768, which requires 17 bits in 2’s complement 

representation). Here, the V bit is set. 
 
 fdiv instruction: Unsigned Fractional divide (16 bits by 16 bits). Dividend: D, Divisor: X. Quotient (in X) and Remainder 

(in D) are 16-bits wide. This is useful for division when numbers are represented in fixed point arithmetic. 
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IIMMPPLLEEMMEENNTTIINNGG  LLOOOOPPSS  
Loops make use of the Branch Instructions along with Compare and Test, Loop Primitive, and Decrementing / Incrementing 
Instructions. The Branch Instructions can be classified by the type of condition required to branch: 
 

 Unconditional branches: The branch is always taken (e.g.: bra next) 

 Simple branches: These instructions take a look at a particular bit in the Condition Code Register (CCR) to determine 

whether to branch. 
For example: beq next ; If Z=1, it branches. 

For example: bvs next ; If V=1 (overflow in 2’s complement), it branches. 

 Unsigned branches: These instructions treat the previous operation as between unsigned numbers and as such look for 
a specific combination of CCR bits. 
For example: bls next ; If in the previous operation, the first operand was lower than or equal to the second operand, 

then this means that C+Z=1 (this is only true if the operands are treated as unsigned). 

 Signed branches: These instructions treat the previous operation as between unsigned numbers and as such look for a 
specific combination of CCR bits. 

For example: bge next ; If in the previous operation, the first operand was greater than or equal to the second 

operand, then this means that NV=0 (this is only true if the operands are treated as signed). 

 

EXAMPLE: Store the numbers from na to nb in a memory array. This can be implemented as a for loop : 
  

for i = na to nb do 

array[i]  i 

end 

 
ASM Code: unit4b.asm 
; Include derivative-specific definitions  

INCLUDE 'derivative.inc'  

ROMStart    EQU  $4000  ; ROMStart  $4000  

na EQU 3 

nb EQU 10 

 

; variable/data section 

ORG RAMStart ; Originate data at address RAMStart 

             

; Variables Definition:  

i ds.b 1; 1 byte is reserved for the index. Range: 0 to 255 

array ds.b nb-na+1; nb-na+1 bytes reserved for the final sum 

 

; code section 

ORG   ROMStart 

movb #na,i  ; m[i]  na 

ldx #array  ; X  array 

 

loop movb i, 0,X ; m[X]  [i] 

ldaa i      ; A  [i] 

cmpa #nb 

beq next 

inx 

inc i       ; m[i]  [i]+1 

bra loop 

 

next bra next ; infinite loop 

 
 The definition of the constants na and nb allows us to have a generic code. 

 Note that X is used as an index. Initially X $1001. Then the memory contents pointed to by X store the value of ‘i’. As 

i increases, so does the address stored in X. 

 At every iteration, the register A holds the value of i so that it can be compared with nb. 

 The variable ‘array’ is defined as having ‘nb-na+1’ bytes. 

 The variable ‘i’ occupies 1 byte, i.e., na and nb are limited to 0 to 255.  

 The instruction beq branches if the result of the previous operation is 0. What the instruction actually checks is whether 

the bit Z of the CCR is 1. 

 The instruction inc increments the contents of a memory address. Note that only the 8-bit data of the memory address is 

incremented, so this instruction does not work with variables defined as having more than one byte. 
 The last instruction bra next is an unconditional branch. By always branching to itself, it enters into an infinite loop. 

  

Address 8 bits

[i]

$03

0x4000

0x4001

...

...

$04

$05

$06

$07

$08

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1008

...

RAMStart  i

array

ROMStart 

$09

$0A

0x1007

0x1006
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EXAMPLE: Add the numbers from na to nb. This can be implemented as a for loop:  
sum = 0 

for i = na to nb 

 sum  sum + i 

end 

 

ASM Code: unit4c.asm 
; Include derivative-specific definitions  

INCLUDE 'derivative.inc'  

ROMStart    EQU  $4000  ; ROMStart  $4000 

na EQU 1 

nb EQU 10  

 

; variable/data section  

ORG RAMStart ; Originate data at address RAMStart             

; Variables Definition: 

i ds.w 1; 1 word is reserved for the index 

sum ds.w 1; 1 word is reserved for the final sum 

 

; code section 

ORG   ROMStart ; Originate data at address ROMStart. 

ldx #na  ; X  na 

ldd #na  ; D  na 

 

loop: cpx #nb  ; X = nb? (X-nb: only CCR bits are modified) 

beq next ; Z = 1? (i.e., X=i?) 

inx 

stx i 

addd i  ; D  [D] + [i] 

bra loop 

next std sum  ; m[sum]  [D] 

 

  ‘i’ is defined as 1 word (16 bits, range: 0 to 65535). To operate ‘i’, we must use instructions that operate with 16 bits. 

 The variable ‘sum’ occupies 16 bits (one word). This is where the final result will be stored. The most efficient way to 

accumulate the summation is to store it in register D and use the addd instruction. In the example, the sum of the 

numbers 1 to 10 is: 1+2+3+4+5+6+7+8+9+10=55=$0037. 

 
EXAMPLE: Given 10 consecutive positive numbers (1 byte) in memory, find the maximum value. 

maxval  array[0] 

i=1; 

while (i < N) do 

 if maxval < array[i] then 

  maxval  array[i] 

 end 

 i  i + 1 

end 

 

ASM Code: unit4d.asm 
; Include derivative-specific definitions  

INCLUDE 'derivative.inc'  

ROMStart    EQU  $4000  ; ROMStart <- $4000 

N EQU 10 

 

; variable/data section 

            ORG RAMStart ; Originate data at address RAMStart      

; variables definition: 

array dc.b 21,32,42,9,125,244,255,224,37,98; positive numbers 

maxval ds.b 1 ; 1 byte is reserved for the maximum value 

 

; code section 

            ORG   ROMStart ; Originate data at address ROMStart 

            movb array, maxval ; m[maxval]  [array] 

            ldx #(array + 1); X  array+1 

            ldab #N         ; B  N 

loop:       ldaa maxval     ; A  [maxval] 

            cmpa 0,X         

            bhs next        ; A >= [$0+X]? 

            movb 0,X,maxval ; m[maxval]  [$0+[X]]             

next        inx 

            dbne B,loop ; loop primitive instruction. B  B-1 = 0? 

Address 8 bits

iH

iL

0x4000

0x4001

...

...

$00

...

0x1000

0x1001

0x1002

0x1004

...

RAMStart  i

sum

ROMStart 

$370x1003

Address 8 bits

$15

$20

0x4000

0x4001

...

...

$2A

$09

$7D

$F4

$FF

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x100A

...

RAMStart  array

maxval

ROMStart 

$E0

$25

0x1007

0x1006

$62

$FF

0x1008

0x1009
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 Assumption: We are working with positive numbers. Thus, we used bhs instead of bge. bge makes the comparison 

treating the numbers as signed, while bhs makes the comparison treating the numbers as unsigned. Since we are working 

with positive numbers, we must use bhs. If we were treating the bytes as unsinged, bge must be used instead.  

 
EXAMPLE: Given 10 numbers, count the number of elements that are divisible by 8.  
We count the numbers whose 3 LSBs are zero. 
 
ASM Code: unit4e.asm 
; Include derivative-specific definitions  

INCLUDE 'derivative.inc'  

ROMStart    EQU  $4000  ; ROMStart <- $4000 

N EQU 10 

 

; variable/data section 

      ORG RAMStart ; Originate data at address RAMStart      

; variables definition: 

nums dc.b 88,12,8,4,16,23,41,120,34,176; 

counter ds.b 1 ; 1 byte is reserved for the count 

 

; code section 

            ORG   ROMStart 

            clr counter 

            ldx #nums ; X  nums 

            ldab #N ; B  N 

loop:       brclr 0,X, $07, yes 

            bra nno 

yes:        inc counter 

nno:        inx 

            dbne B, loop ; B  B-1 = 0? 

forever:    bra forever 

 
 

SSHHIIFFTT  AANNDD  RROOTTAATTEE  IINNSSTTRRUUCCTTIIOONNSS  
Logical shift: The input bit is 0, and the output bit goes to C flag. 
Arithmetic shift: The output bit goes to C flag. The input bit is zero if left shift. The input bit is the MSB if right shift 
 
Example: A = $9A, B = $CE, m[$1F] = $B7 
 Result C  Result C  Result C  Result C 

lsla A = $34 1 lsra A=$4D 0 asla A = $34 1 asra A = $CD 0 

lslb B = $9C 1 lsrb B=$67 0 aslb B = $9C 1 asrb B = $E7 0 

lsld D = $359C 1 lsrd D=$4D67 0 asld D = $359C 1    

lsl $1F m[$1F]=$6E 1 lsr $1F m[$1F]=$5B 1 asl $1F m[$1F]=$6E 1 asr $1F m[$1F]=$DB 1 

 
Rotate: We can rotate to the left or to the right. The trick is that these instructions use whatever it is on the carry bit 
 

Example: A = $9A, B = $CE, m[$1000] = $B7 
C = 0 C = 1 

 Result  Result  Result  Result 

rola A=$34,C=1 rora A=$4D,C=0 rola A=$35,C=1 rora A=$CD,C=0 

rolb B=$9C,C=1 rorb B=$67,C=0 rolb B=$9D,C=1 rorb B=$E7,C=0 

rol $1000 m=$6E,C=1 ror $1000 m=$5B,C=1 rol $1000 m=$6F,C=1 ror $1000 m=$DB,C=1 

 

BBOOOOLLEEAANN  IINNSSTTRRUUCCTTIIOONNSS  
Example: D = $BE45, m[$1000] = $C3 
 Result  Result  Result  Result 

anda $1000 A = $82 oraa $1000 A = $FF eora $1000 A = $7D com $1000 m[$1000] = $3C 

andb $1000 B = $41 orab $1000 B = $C7 eorb $1000 B = $86 neg $1000 m[$1000] = $3D 

 

BBIITT  TTEESSTT  AANNDD  MMAANNIIPPUULLAATTEE  IINNSSTTRRUUCCTTIIOONNSS  
Take a look at HHCCSS1122  CCPPUU  RReeffeerreennccee  MMaannuuaall  RReevv..  44..00 for detailed information on the instructions (allowed addressing modes, 
bytes per instruction, etc). 
Examples: 

 bclr 0,X,$42: Clears bit 1 and bit 6 ($42 = 0100 0010) of the memory contents pointed by 0+[X] 

 bset 0,Y,$45: Sets bit 1, bit 3, bit 7 ($85: 1000 0101) of the memory contents pointed by 0+[Y] 

 bita 0,X: Performs A AND [0+[X]]. Updates Z if result in 0, and N if result is negative. V is set to zero.  

 

Address 8 bits

$58

$0C

0x4000

0x4001

...

...

$08

$04

$10

$17

$29

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x100A

...

RAMStart  nums

counter

ROMStart 

$78

$22

0x1007

0x1006

$B0

$05

0x1008

0x1009

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf
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PPRROOGGRRAAMM  EEXXEECCUUTTIIOONN  TTIIMMEE  
The execution time is the sum of bus cycles a series of instructions takes. For each instruction, this information is found on 

the Access Detail column of the Instruction Glossary in the HCS12 CPU Reference Manual. For example, psha takes 2 cycles 

(the Access Detail column has 2 letters, pula takes 3 cycles, and nop takes one cycles. This is very useful to create time 

delays. In particular, psha followed by pula takes 5 cycles and does nothing. 

 
Example: 
 We want to generate a 50 ms delay on a Dragon12-Light Board with a 25 MHz bus clock.  
 This can be accomplished by a loop. Each iteration of the loop takes 𝑛 cycles. If we loop for 𝑛𝑡𝑖𝑚𝑒𝑠, then we have that our 

delay was 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 𝑐𝑦𝑐𝑙𝑒𝑠 ≡ 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 × 𝑐𝑙𝑜𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 ×
1

25×106
= 50 ×

1

103
→ 𝑛𝑡𝑖𝑚𝑒𝑠 × 𝑛 = 125 × 104 

 As a counter, 𝑛𝑡𝑖𝑚𝑒𝑠 can be stored in a 16-bit register (largest one). This means that 𝑛𝑡𝑖𝑚𝑒𝑠 ≤ 65535. Then, a good 

number would be 50000. This results in 𝑛 =
125×104

50000
= 25. So, we need to have a loop with 25 bus cycles. 

 

Using just nops More efficient code (fewer instructions) 
ldx #50000 

loop:  nop          ; 1 cycle 

       nop          ; 1 cycle 

       nop          ; 1 cycle 

       ... 

       nop          ; 1 cycle 

       dbne X, loop ; 3 cycles 

ldx #50000 

loop:  psha         ; 2 cycles 

       pula         ; 3 cycles 

       psha         ; 2 cycles 

       pula         ; 3 cycles 

       psha         ; 2 cycles 

       pula         ; 3 cycles 

       psha         ; 2 cycles 

       pula         ; 3 cycles 

       nop          ; 1 cycle 

       nop          ; 1 cycle 

       dbne X, loop ; 3 cycles 

 

MMUULLTTIIPPLLYY--AACCCCUUMMUULLAATTEE  IINNSSTTRRUUCCTTIIOONN  
 emacs <opr>: multiplies the 16 bits pointed by X and the 16 bits pointed by Y and add the result to the memory operand 

(4 bytes). Stores the result in the same address. It is a signed operation, i.e. multiplication is carried out assuming that the 
numbers are in 2’s complement. 

 
Example: 𝑝 × 𝑤2 + 𝑞 × 𝑤 + 𝑟 = (𝑝 × 𝑤 + 𝑞) × 𝑤 + 𝑟. In the following code, we use p=125, w=103, q=3452, r=2134. 

 
ASM Code: unit4f.asm 
; Include derivative-specific definitions  

 INCLUDE 'derivative.inc'  

ROMStart    EQU  $4000  ; absolute address to place my code/constant data 

            ORG RAMStart ; Start data at $1000 

p dc.w 125    ; 1 word reserved (only use 1 byte: -128 to 127 to avoid overflow). 

w dc.w 103    ; 1 word reserved (only use 1 byte: -128 to 127 to avoid overflow). 

q dc.w 3452   ; 1 word reserved (only use 15 bits: -2^14 to 2^14-1 to avoid overflow). 

r ds.w 2      ; 2 words reserved (only use 31 bits: -2^30 to 2^30-1 to avoid overflow) 

result ds.w 2 ; 2 word reserved for the 32-bit result  

k ds.w 1      ; 1 word reserved for intermediate 16-bit result 

 

; code section 

            ORG   ROMStart 

Entry: 

_Startup:   LDS   #RAMEnd+1       ; initialize the stack pointer. SP <- $3FFF+1 

 

mainLoop:   movw  #0,r 

            movw  #2134, r+2      ; r <- 2134 

             

            ldx #p 

            ldy #w 

            movw #0,result 

            movw q,result+2       ; result <- q 

             

            emacs result          ; result <- p*w + result 

                         

            movw result+2, k      ; k <- p*w+q 

            ldx #k             

            movw r, result 

            movw r+2, result+2    ; result <- r 

 

            emacs result; ; result <- k*w + result    



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY 
ECE-470/570: Microprocessor-Based System Design  Fall 2014 

 

 

7 Instructor: Daniel Llamocca 

SSUUBBRROOUUTTIINNEESS 

 A subroutine is a sequence of instructions that can be called from different places in a program.  
 Once the subroutine is finished, it returns to the instruction immediately following the call instruction (bsr, jsr, call). To 

accomplish this, when the subroutine call instruction is executed, the address of the next instruction (called Return 
Address) is stored in the Stack. When the subroutine is finished, the return instruction (rts, rtc) grabs the Return Address 
from the Stack and places it on the Program Counter so that we continue with the execution of the instruction located at 
the Return Address. 

 The Stack is a LIFO structure. Values are pushed onto the Stack. Values are pulled from the Stack starting with the last 
value that was pushed.  

 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE: 
 Here, the subroutine called ‘myfun’ performs the bitwise AND operator of register A with a memory position. The result is 

stored at another memory position. 
 Note how the Stack Pointer (SP) is given the value $4000 (which is the address where the instruction start). The idea is 

that the Stack must grow from the last allowable data memory ($1000 to $3FFF). So, when we want to add data to the 

Stack, we first decrease the value of SP and then store the data.  

 The memory figure on the left is the state of the memory after the bsr myfun instruction has been executed (and right 

before entering the subroutine). This instruction does the following: 

 SP  SP – 2. Then, the Return Address (0x4009) is stored on m[SP] and m[SP+1]. 

 PC  PC + offset. This becomes: PC  Address of ‘myfun’ = $400E 

 The memory figure on the right is the state of the memory after the rts instruction has been executed. This instruction 
does the following: 

 SP  SP + 2. This makes the Stack effectively disappear. 

 PC  PC + offset. This becomes: PC  Return Address = $4009. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

movb #$DA, 1,-SP

movw #$FE4D, 2,-SP

ldaa #$9C

psha

pula

ldx 2,SP+

ldab 1,SP+

SP

$FE

$9C

$4D

$DA

SP SP

$FE

$9C

$4D

$DA

Empty Stack Empty Stack

main:  lds #$4000

ldaa #$7A (2 bytes)

movb #$8A,$1000 (5 bytes)

bsr myfun ; PC <- $400E (2 bytes)

ldab $1001 (3 bytes)

bra main

myfun: anda $1000 (3 bytes)

sta $1001

rts ; PC <- $4009

Address 8 bits

$8A

...

...

0x1000

0x1001

...

$40

$09

SP

Return
Address

0x3FFF

0x4000

0x4002

0x4006

0x4009

0x4007

0x400C

0x400E

Address 8 bits

$8A

$0A

...

...

0x1000

0x1001

...

$40

$09

SP

0x3FFF

0x4000

0x4002

0x4006

0x4009

0x4007

0x400C

0x400E
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EXAMPLE: Applying the 2’s complement operation to a 16-bit value 

 
 In this example, the subroutine ‘my_neg’ computes the 2’s complement of a 16-bit value (or changes the sign of a 16-bit 

value). The input value is given in D. The output value is returned in Y. 
 The subroutine employs the register D to perform the operation. However, the main routine uses D after the subroutine is 

completed. Therefore, the subroutine has to push the value of D into the Stack before modifying it. Before exiting, the 
subroutine pulls the value of D from the Stack to restore D to its original value. 

 In the code below, we use pusha and pushb to store the contents of D (note that pushd could have also been used). We 

also use pula and pulb to restore the contents of D (puld could have also been used). 

 Note that during the execution of the subroutine, the Stack stores A, B, and the Return Address. 
 In general, we can pass parameters to a Subroutine via: Registers, Stack (parameters are pushed on the Stack before the 

subroutine is called), and Global Memory. We can also get the results from the Subroutine on: Registers, Stack (the main 
routine requires to create space in the Stack before the subroutine call), and Global Memory. 

 

 lds #RAMEnd+1: 

In CodeWarrior with the Dragon12-Light Board, the Stack Pointer is assigned the value of #RAMEnd+1 = $3FFF+1 = 

$4000. At this point, the Stack is empty, and we are not supposed to write on $4000, since this is the starting address of 

the Instructions (ROMStart = $4000). Every time we push a value onto the Stack, we use pusha, pushb, pushc, 

pushd, bsr, jsr. These instructions decrease the value of the Stack Pointer, and then store the contents on m[SP]. If 

we use movw, movb to store data on the Stack (this is useful when we have to input parameters and we are out of 

registers), we have to make sure to first decrease the value of the Stack Pointer. 

 The value of SP=$4000 means that the Stack is empty. By using this value of $4000, we are placing the Stack at the last 

memory addresses of the RAM section ($1000 to $3FFF). 

  
 
  

INCLUDE 'derivative.inc' 

ROMStart    EQU  $4000 

; variable/data section

ORG RAMStart

; variables definition:

dataa dc.w $10F2;

datab dc.w 511;

; code section

ORG   ROMStart

Entry:

_Startup: lds #RAMEnd+1 ; SP$4000

ldd dataa

bsr my_neg

addd datab

sty 0,D

; ===== Subroutine ============

my_neg:   pshb

psha

coma

comb

addd #1

leay 0,D

pula

pulb

rts ; PC <- Return Address

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart  dataa

datab

ROMStart 

SPA

B

Return
AddressRAMEnd  0x3FFF

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart  dataa

datab

ROMStart  SP

RAMEnd  0x3FFF

S
T
A
C
K

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart  dataa

datab

ROMStart 

SPReturn
AddressRAMEnd  0x3FFF

S
T
A
C
K

$10

$F2

0x4000

0x4001

...

...

$01

$FF

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart  dataa

datab

ROMStart  SP

RAMEnd  0x3FFF

Return
Address

Address 8 bits Address 8 bits
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EXAMPLE: Fibonacci sequence 
𝐹0 = 0, 𝐹1 = 1 (starting point). 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 

 
 The following algorithm gets F(counter) and places this result in variable ‘FiboRes’. 

 A Subroutine called ‘CalcFibo’ computes the Fibonacci number. The Subroutine gets the input argument in register X; 

the subroutine provides the result in D.  Since D is a 16-bit register, the maximum positive number we can store is 65535. 

Since F(24) = 46368 and F(25) = 75025, we can only compute up to F(24). 

 The subroutine modifies the contents of X. As a precautionary measure, the subroutine pushes the value of X on the stack 
at the beginning of the subroutine and pulls the value of X at the end of the subroutine (so that X keeps its proper value). 

 
Algorithm: 
Main Routine CalcFibo SubRoutine. Input Parameter X. Result stored in D 

X  counter 

if X > 24 then 

   restart 

end 

 

Go to Subroutine CalcFibo 

 

FiboRes  D 

restart 

 

push X 

Y  0, D  1 (Y stores Fn-2, D stores Fn-1) 

X  X-1 

if X = 0 then 

   exit CalcFibo routine 

end 

while X ≠ 0  

   Y  D+Y 

   exchange D and Y 

   X  X-1 

end 

pull X 
  

ASM Code: unit4g.asm 

 
 
 
 

 
 
 
 
 
 
 
 
 
  

; Include derivative-specific definitions 

INCLUDE 'derivative.inc' 

ROMStart    EQU  $4000

; variable/data section

ORG RAMStart ; Start data at $1000

; Insert here your data definition.

Counter     DC.W 10 ; Fibonacci number to compute. Counter >= 1

FiboRes     DS.W 1 ; 1 word (16 bits) reserved for the result

; code section

ORG   ROMStart

Entry:

_Startup:   LDS   #RAMEnd+1    ; SP <- $3FFF+1 (initialize SP)

mainLoop:   LDX   Counter      ; X contains counter

CPX   #24

bhi   mainLoop     ; Fibo(25) causes overflow!

BSR   CalcFibo

STD   FiboRes ; store result

BRA   mainLoop     ; restart.

; ==========================================================

; Subroutines

; ==========================================================

CalcFibo:  ; Function to calculate fibonacci numbers.

pshx

LDY   #$00         ; Fn-2

LDD   #$01         ; Fn-1

DBEQ  X,FiboDone   ; If X was 1, we're done

FiboLoop:

LEAY  D,Y          ; Y  D+Y

EXG   D,Y          ; exchange D and Y

DBNE  X,FiboLoop

FiboDone:   pulx

RTS                ; result in D

Address 8 bits

$00

$0A

0x4000

0x4001

...

...

$00

$00

...

0x1000

0x1001

0x1002

0x1003

0x1004

...

RAMStart  Counter

FiboRes

ROMStart 

SPXH

XL

Return
AddressRAMEnd  0x3FFF

$00

$0A

0x4000

0x4001

...

...

$00

$37

...

0x1000

0x1001

0x1002

0x1003

0x1004

...

RAMStart  Counter

FiboRes

ROMStart  SP

RAMEnd  0x3FFF
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STACK FRAME: 

It is an orderly way to store data on the Stack: 
 
 Incoming Parameters: They are usually provided as registers. But if we run out of registers, we can always place incoming 

parameters on the Stack. 
 Return Address: These two bytes are always stored on the Stack. 
 Saved Registers: If we need to use registers inside the subroutine, a good practice is to push the registers’ values at the 

beginning of the subroutine. When the subroutine is finished, the register recover their original values. This way, the 
registers are never modified after a subroutine has been executed. 

 Local Variables: We might need memory for particular operations inside the subroutine. If we just want to use this 
memory while the subroutine is executing, we use memory from the stack. This is called Local memory, because it is not 
available once we exit the subroutine. 

 
Example: 
 
; Include derivative-specific definitions  

  INCLUDE 'derivative.inc'  

 

ROMStart    EQU  $4000  ; absolute address to place my code/constant data 

 

; variable/data section 

 

            ORG RAMStart ; Start data at $1000 

 ; Insert here your data definition. 

val1 dc.b #$A2 ; $039D 

val2 dc.b #$91 ; $00F2 

val3 dc.b #$34 ; $00F5 

 

; code section 

            ORG   ROMStart 

            

Entry: 

_Startup:   LDS   #RAMEnd+1    ; initialize the stack pointer. SP <- $3FFF+1 

 

mainLoop:   ; ................ 

            movb val1,1,-SP 

            movb val2,1,-SP 

            movb val3,1,-SP 

             

            bsr myfun  

             

            leas 3,SP 

             

            ; More instructions 

            ; ........... 

             

forever:    bra forever 

; ==================================== 

; Subroutines 

; ==================================== 

             

myfun:      psha  

            pshb 

             

            ; Allocating 4 bytes for local variables 

            leas -4,SP; SP <- SP-4 

                    

             

            ; Instructions that use local variables, registers, 

            ; and input parameters provided in the Stack 

            ; ................. 

            ; ................. 

             

            leas 4,SP; SP <- SP+4 ; De-allocating Local Memory 

            pulb 

            pula 

            rts 

              

$A2

$91

0x4000

0x4001

...

...

$34

...

0x1000

0x1001

0x1002

0x1003

...

RAMStart 
val1

val2

ROMStart 

SP

A

B

Return

Address

RAMEnd  0x3FFF

S
T
A
C
K

val3

val2

val1

Input
Parameters

Saved
Registers

Local
Variables

val3


